Divisor problem in arithmetic progressions modulo a prime power
نویسندگان
چکیده
منابع مشابه
The divisor function over arithmetic progressions
provided x is sufficiently large. An asymptotic formula of type (1) Df (x; q, a) = (1 +O((log x)))Df (x; q) , in which the error term is smaller than the main term by a suitable power of log x, is good enough for basic applications. More important than the size of the error term is the range where (1) holds uniformly with respect to the modulus q. In this paper we consider the problem for the d...
متن کاملThe Minimal Number of Three-Term Arithmetic Progressions Modulo a Prime Converges to a Limit
How few three-term arithmetic progressions can a subset S ⊆ ZN := Z/NZ have if |S| ≥ υN? (that is, S has density at least υ). Varnavides [4] showed that this number of arithmetic-progressions is at least c(υ)N for sufficiently large integers N ; and, it is well-known that determining good lower bounds for c(υ) > 0 is at the same level of depth as Erdös’s famous conjecture about whether a subset...
متن کاملThe Minimal Number of Three-Term Arithmetic Progressions Modulo a Prime Converges to a Limit
Given an integer r ≥ 2 and a number υ ∈ (0, 1], consider the collection of all subsets of Z/rZ having at least υr elements. Among the sets in this collection, suppose S is any one having the minimal number of three-term arithmetic progressions, where in our terminology a three-term arithmetic progression is a triple (x, y, z) ∈ S3 satisfying x + y ≡ 2z (mod r). Note that this includes trivial p...
متن کاملThe Minimal Number of Three-Term Arithmetic Progressions Modulo a Prime Converges to a Limit
Given an integer q ≥ 2 and a number θ ∈ (0, 1], consider the collection of all subsets of Zq := Z/qZ having at least θq elements. Among the sets in this collection, suppose S is any one having the minimal number of three-term arithmetic progressions, where in our terminology a three-term arithmetic progression is a triple (x, y, z) ∈ S3 satisfying x + y ≡ 2z (mod q). Note that this includes tri...
متن کاملPrime Numbers in Certain Arithmetic Progressions
We discuss to what extent Euclid’s elementary proof of the infinitude of primes can be modified so as to show infinitude of primes in arithmetic progressions (Dirichlet’s theorem). Murty had shown earlier that such proofs can exist if and only if the residue class (mod k ) has order 1 or 2. After reviewing this work, we consider generalizations of this question to algebraic number fields.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2018
ISSN: 0001-8708
DOI: 10.1016/j.aim.2017.12.006